
1. Bash Shell Features
(Update 1)

shell builtins, redirection, operators, variables, functions

1
1Monday, August 17, 2015

bash Features

Command Interpreter, Processor and Language (for rapid
prototyping)

Customized environments via (.bash_profile, .bashrc) initialization
files

Capture frequently used commands via history, aliases, scripts and
functions

Uses scripts for replicating commands repeatedly on multiple files

Common user environment by System Administrators

Allows periodic, scheduled tasks in scripts to run

Does Command Completion

2
2Monday, August 17, 2015

bash Features (2)

Unique bash facilities:
- long (word) options [ls --help]
- POSIX mode & conformance [e.g. printf ; set -o posix {or --posix}]
- Regex Character Classes { [[:alpha:]] }
- Command arithmetic
{ for ((expr1;expr2; expr3)); do commands; done }
- functions, variables share name space
- $’...’ and $”...” quoting for strings
- Arrays of unlimited size
- ‘!’ reserved word
- ‘**’ arithmetic exponentiation operator
- Redirection ‘&>’ for STDOUT and STDERR (= > file 2>&1)
- Prompt ($PS1) expansion with backslash escapes and command
substitution
- here string input redirection ‘<<<‘ facility

See <tiswww.case.edu/php/chet/bash/FAQ>

3
3Monday, August 17, 2015

http://tiswww.case.edu/php/chet/bash/FAQ
http://tiswww.case.edu/php/chet/bash/FAQ

bash Responsibilities

Run Startup files, set global variable values

Interpret the commandline

Do variable substitution

do file name expansion (wild cards)

Set up I/O redirection

Set up unnamed pipes between commands

Execute commands and programs

Execute complete, built-in interpreted programming language scripts

4
4Monday, August 17, 2015

Sample Command Manipulations

Delay scripts with sleep, wait
- $ sleep {No. of seconds}; command/script
- $ wait [process id]; command/script

Schedule scripts with at (cron shown elsewhere)
- $ at [-t timeformat] -f ./myscript

Repeat scripts with watch and !# Event Designator
- $ watch -n 5 free -m # 5 second repeats
- $ watch -d ‘ls -l | grep -F katz‘ \
 # show differences each time
- $ command/script; #! # repeats current line once

5
5Monday, August 17, 2015

2. Keyboard MetaCharacters
^C ^D ^Z <ESC> ^V ^H ^?

6
6Monday, August 17, 2015

Keyboard Shortcuts (vim)

Enable vim keyboard shortcuts:
$ set -o vi # all vim commands \
work on current commandline

~/.bash_history history list allows
 command reuse.

<Ctrl-Z> Suspend foreground
 command; fg resumes it.
<Ctrl-C|\> Kill current job (not bash)
<Ctrl-D> Kill current login session
<Ctrl-H> Erase last Character
 <Ctrl-W> Erase last Word
<Ctrl-?> Erase line so far
<Ctrl-S> Stop (Freeze) output
<Ctrl-Q> Start (unfreeze) output
<Ctrl-V> Take next char literally

7

command meaning
[<esc>]{- or j} go up history list

{+ or k} go down history list

h, l move cursor left, right

A Insert at end of line

0, $ go to 1st, last character

i, a insert before, after cursor

x Delete Char under cursor

cw Change Word

<Ctrl-T> swap last 2 chars.

u undo last shortcut

7Monday, August 17, 2015

stty and tset Commands

stty (1) Displays or changes terminal line settings.
$ stty -a # shows all settings

tty (1) Shows what tty port you are connected to

$ stty sane # resets terminal to default settings

tset (1) initializes terminals based on terminal type.

To restore terminal functionality, type:
<Ctrl-J>tset|reset<Ctrl-J> # <Ctrl-J> is a line feed

To reset the environment variable TERM, type:
$ eval `tset -s` # Can also put in .bash_profile

8
8Monday, August 17, 2015

Commands as Symbols

9

Symbol Synonym Command Meaning

() bash Start a subshell within a commandline
as a group of commands

$() `command` Command Substitution

(()) let Arithmetic evaluation; expression
includes an ‘=’ sign

$(()) ` ` Arithmetic expansion (excludes ‘=’ sign)
with substitution of result

[] test Test arithmetic or relational
expression as true or not

[[]] test Test arithmetic, string or relational
expression as true or not

9Monday, August 17, 2015

3. Customizing bash

10
10Monday, August 17, 2015

bash Commandline processing

11
11Monday, August 17, 2015

Initialization (Startup) Files

There are 3 kinds of bash shells:
o Interactive login shell [note: -bash in ps] via (virtual)
console or via ssh
o Interactive non-login shell via gnome or kde terminal
o Non-interactive shell or subshell [scripts, invoking a
subshell]

The login process looks for startup files for all users
containing commands in /etc/profile, /etc/inputrc, /etc/
profile.d/*bash* and customized for you in ~/.bash_profile,
~/.bash_login, or ~/.profile. For a subshell, ~/.bashrc is run

When you logout, bash issues commands in ~/.bash_logout
[e.g. cleanup and temp file removal]

12
12Monday, August 17, 2015

bash Aliases U1

alias is a (short) command name for a commandline

Form: $ alias [name[=‘commandline’]]
Alt Form: $ alias [name[=”commandline”]]
 # Use this for variable and command substitution
Antidote: $ unalias name

An Alias never replaces itself, but: $ alias ls=’ls -Fa’

Aliases can be nested: $ alias lssum=”ll |wc -l”

To temporarily suspend an alias, (e.g. ls) use:
$ \ls or $ /fullpath/ls

Example: $ alias r=’fc -s ‘
 $ alias lss=’ls -las ‘
$ r lss # repeats last command starting with lss

13
13Monday, August 17, 2015

4. bash Variables
var $var ${var} ${array[*]} PATH PS1 SHELL TERM

14
14Monday, August 17, 2015

Environment Variables

Variable = a named container of (string) data (single value).
Environment (global) (uppercase) Variables with values
available in (login) shell on down; Local (lowercase) variables
with values available only in shell they are defined in.

Variable Names: 1st character [A-Za-z_]; other characters [A-Za-
z0-9_]
Define by name; Reference with $ prefix. (var=1; echo $var)
Note: setting a variable only for a script: $ var=1 script.bash

Defined variables are local unless exported.
$ var=”one two three” ; read newvar # [local]
$ echo $var ${newvar} # display variable value
$ export var newvar # global in future subshells
$ export var=”four five six” >> ~/.bash_profile #global, in all
future Login shells (and on down)

15
15Monday, August 17, 2015

Environment Variables (2)

Nullify value of variable
$ unset $newvar # remove variable value, set it to
null but retain variable name

Make variable definitions available for all login
sessions
$. ~/.bash_profile # same as: source ~/.bash_profile
Run the above command instead of logging out
and back in

$ env | less # view current values of global variables
$ declare -p | less # view names of all variables and
their scope

16
16Monday, August 17, 2015

Customizing Primary Prompt

Primary Prompt initial setting in /etc/bash.bashrc
PS1=”${USER}@${HOST}:${PWD}> “
$ echo $PS1
katz@linux-lwsr:~>

Customizing PS1 in ~/.bash_profile
export PS1=”\[$(ppwd)\]\u@\h:\w [\!] >”
BLUE=”\[\e[1;34m\]”; NORMAL=”\[\e[0m\]”;
RED=”\[\e[1;31m\]”
export PS1=”\[$(ppwd)\]$BLUE\u$NORMAL@\h:
$RED\w$NORMAL [\!] >”
$ echo $PS1
katz@linux-lwsr:~ [331]>

17
17Monday, August 17, 2015

Global Variable Meanings

PATH=/home/katz/bin:/usr/local/bin:/usr/bin:/bin:/usr/bin/X11
only directories bash will look for command names
PATH=$PATH:new_dir # appends new_dir to PATH

HOSTNAME=linux-lwsr.site

SHELL=/bin/bash

TERM=xterm

LOGNAME=katz

PWD=/home/katz

_=/usr/bin/env # last word of last command

PS1=”\u@\h \W [\!] \$ “ # See previous slide

18
18Monday, August 17, 2015

Quoting

\ makes the next character ordinary
- \$ makes $ not special; (\\ becomes \)

‘...’ prevents any bash interpretation

“...” prevents any bash interpretation except
variable evaluation, command substitution and
backslashes (\)

`...` { back quotes } or $(...) command substitution
executes the command within and its result replaces
the back quotes. bash then runs the entire modified
commandline. Use \` ... \` for 1 level of nesting.

19
19Monday, August 17, 2015

Special Variables

Variables can have 3 states:
- it doesn’t exist, [=disabled or unset]
- it exists, but is empty (“”) [=enabled or set]
- it exists, and is not empty [=enabled or set]

Positional Parameters (Commandline arguments):
$0 [= shell/script name] $1 $2 ... $9 ${10} ${11}...
Assign values via builtin set or in script arguments
$ set -- hi there how are you? ; echo $0 $1 $2 $3 $4 $5

Special Parameters: $# argument list count
$* concatenated arguments $@ same as $* but quoted args
$! last background Process ID $$ current Process ID
$_ rightmost word (non-command) of previous line
$- shows options of the session login shell

20
20Monday, August 17, 2015

Special Variables (2)

String Operators in Variables
${var:-word} var exists, not null, value, else word
${var:+word} var exists, not null, word else null
${var:=word} var exists, not null, value, else var=word
(persists)
${var:?[mesg]} var exists, not null, word else error message
${var:offset:length} return substring starting at offset and
up to length characters
${#var} the number of characters in var’s value is output

Examples: $ echo $var; echo ${var:-A1} # outputs A1
$ var=25 echo $var; echo ${var:+true} # outputs 25 true
$ var=”” echo $var; echo ${var:?”not set”} # outputs not set
$ var=abcdefg echo $var; echo ${var:2:4} # outputs abcdefg

21
21Monday, August 17, 2015

Special Variables (3)

Pattern Matching String Operators (? * [] wildcards used)
${var#pattern} output var value minus shortest beginning
pattern
${var##pattern} output var value minus longest beginning
pattern
${var%pattern} output var value minus shortest ending
pattern
${var%%pattern} output var value minus longest ending
pattern
${var/pattern/string} longest match to pattern in value is
is replaced by string once (#, % used as anchors)
${var//pattern/string} longest match to pattern in value is
is replaced by string for all matches (#, % used as anchors)

22
22Monday, August 17, 2015

Special Variables (4) U1

Examples:
$ var=/home/katz/long.file.name
$ echo ${var#/h*/} # outputs katz/long.file.name
$ echo ${var##/h*/} # outputs long.file.name
$ echo ${var%.*e} # outputs /home/katz/long.file
$ echo ${var%%.*e} # outputs /home/katz/long
$ echo ${var/[aeiou]/X}
/hXme/katz/long.file.name
$ echo ${var//[aeiou]/X}
/hXmX/kXtz/lXng.fXlX.nXmX

23
23Monday, August 17, 2015

bash Type Variables

declare builtin command options
-a variable is an indexed array
-A variable is an associative array
-f name is a function, not a variable
-i variable is an integer
-r variable is a constant (readonly)
-x variable is global (exported)

List each variable by type:
$ declare -a|A|f|i|r|x # choose one option

Example: $ declare -rx pi=3.1415927

24
24Monday, August 17, 2015

bash Array Variables

Define indexed arrays:
$ declare -a flower=’([0]=”rose” [1]
=”daisy” [2]=”violet”)’
$ flower=(rose daisy violet) # Alt. Def.
$ echo ${flower[*]} # to display values

Define associative arrays:
$ declare -A fish=’([smelt]=”3” [salmon]
=”6” [tuna]=”8”)’
$ echo ${fish[*]} # to display values

25
25Monday, August 17, 2015

5. Functions
name() function name()

26
26Monday, August 17, 2015

bash Functions

3 ways to define:
> name() { command; ...; return; }
> function name { command; ...; return; }
> name()
{
command
...
return
}

Functions and calling programs share the
same shell

27
27Monday, August 17, 2015

bash Functions (2) U1

Function names also share variable name space

Define in memory on commandline; evaluate (run)
by invoking name as a command

Save in a file and define in memory via
$. ./functionfile # reuse between login sessions

$ export -f functionname # reuse for future shells

Show Functions (typeset obsolete):
$ declare -F # show [declare -f] names only
$ declare -f # shows names and definitions

Remove Function
$ unset -f name

28
28Monday, August 17, 2015

Function Examples

Directory: mcd() { mkdir -p $1 ; cd $1; }

Selective Lists: lsext() { find . -type f -iname
‘*.’${1}’ ‘ -exec ls -l {} \; ; }

Create random password: rpass() { cat /dev/
random | tr -cd ‘[:graph:]’ | head -c ${1:-12};
echo; }

Get IP address of a given interface: getip() { /
sbin/ifconfig ${1:-eth0} | awk ‘/inet addr/ {print
$2}’ | awk -F: ‘{print $2}’ ; }

29
29Monday, August 17, 2015

Function Examples (2)

Surveillance function
wait_for_user()
wait for a user to log in on this system
usage: wait_for_user userid repeattime
until who | grep “$1” > /dev/null
do
sleep ${2:-30} # default time=30 seconds
done
return
}

30
30Monday, August 17, 2015

6. Manipulating Commands
history fc -l <esc>- r

31
31Monday, August 17, 2015

bash Command History

bash History: maintains a list of recently
issued commandlines (events) that offers a
quick way to repeat or edit and rerun past
commands.

Your Command History stored in file:
.bash_history

Advantages:
- keeps a recent record of your session
- lets you (modify and) rerun past commands
- lets you review commands having errors

32
32Monday, August 17, 2015

bash Command History (2)

History Variables:
HISTSIZE=1000 Maximum No. of events saved during a
login session
HISTFILE=~/.bash_history History file path
HISTFILESIZE=1000 Maximum No. of events saved
between login sessions

Display history file contents:
$ history [start [end]] # or run fc -l

Edit command(s) in history file contents and run result:
$ fc [start [end]] # vim editor default else use fc -e vim

Repeat last command:
$ r [pattern=replacement] [command|event No.]
an alias for running fc -s; can also type !!

33
33Monday, August 17, 2015

bash Command History (3)

Command-
Line Event
Desig-
nators

34

Designator Meaning

! Starts a history event

!! previous command

!n Command No. n in history

!-n The nth preceding command

!string Most recent command starting with
“string”

!?string[?] Most recent command containing
“string”

!# Repeat current command typed so far

!{event} Isolate event designator

34Monday, August 17, 2015

bash Command History (4)

Argument
Word
Desig-
nators

35

Designator Meaning
n Nth word; word 0 = command

name^ First word = 1st argument
$ Last word (argument)

m-n All word in range word m through
word n; missing m means 0

n* all words from word n to end of
line

* all words but command name (=1*)

% word matched by most recent
?string?

^pat^rep^ short for [g]s/old/new/

35Monday, August 17, 2015

7. bash Option Behavior

36
36Monday, August 17, 2015

bash Options

Login bash shell is called with certain options. Use
$- to view current option letters:
$ echo $- # h=hash commands, i=interactive shell,
m=job control on B=brace expansion H=history
expansion.
himBH

To enable commandline editing, type: set -o vi

See set options <gnu.org/software/bash/manual/
html_node/The-Set-Builtin.html> and shopt options
<gnu.org/software/bash/manual/html_node/The-
Shopt-Builtin.html>

37
37Monday, August 17, 2015

http://gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
http://gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
http://gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
http://gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
http://http://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html%23The-Shopt-Builtin
http://http://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html%23The-Shopt-Builtin
http://http://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html%23The-Shopt-Builtin
http://http://www.gnu.org/software/bash/manual/html_node/The-Shopt-Builtin.html%23The-Shopt-Builtin

bash Settings

To show global variable names and values, use:
$ [print]env | less

To show or modify global variable values in the current
shell or for a subshell, use:
$ env [-i|-u name] [-] [name=value]...[commandline]

Example:
$ cat display_xx
echo “Running $0”
echo $xx
$ env xx=process ./display_xx # Alt.: xx=process ./display_xx
Running ./display_xx
process

38
38Monday, August 17, 2015

8. Reading, Writing,
Modifying Strings

expr

39
39Monday, August 17, 2015

bash String Manipulation

String Length variations:
- $ echo ${#string}
- $ expr length $string
- $ expr “$string” : ‘.*’
- $ echo $string | expr $(wc -c) - 1

expr built-in form-string manipulation:
expr STRING REGEXP
expr match STRING REGEXP
expr substr STRING POS LENGTH # POS is 1-based
expr index STRING CHARS # 0 if no CHARS found
expr length STRING

40
40Monday, August 17, 2015

9. bash Expansions
arithmetic relational command substitution brace

substitution

41
41Monday, August 17, 2015

bash Filename Expansion

File name
Expansion
(wildcards)

42

Symbol Meaning Example

? Represents any
single character

echo ? a?a

*
Represents zero

or more
characters

ls *
ls *.txt

[], [!]
[[:class:]]

Represents a
list or range of
characters (!
means not)

ls [aeiou]*
ls *.??[a-z0-9]

{ } alternatives list
cp {*.doc,*.pdf} ~

echo a{b,c}d

42Monday, August 17, 2015

Extended Filename Expansion

Extended
Pattern
Matching

43

Symbol Meaning Example

?(pat1|...
|patn)

0 or 1 of a pattern
collection (+ null)

$ ls ?(x|y1)
x

@(pat1|
...|patn)

Exactly 1 of a
pattern out of n

$ ls @(x|y1)
x

*(pat1|
...|patn)

0 or more of a
pattern collection

$ ls *(x|y1)
x xx xxx xxxx

+(pat1|
...|patn)

1 or more of a
pattern collection

$ ls +(x|y1)
x xx xxx xxxx

!(pat1|
...|patn)

Any pattern
except these

$ ls !(z1|y1)
x xx xxx xxxx

43Monday, August 17, 2015

Arithmetic Operators

Used in expr and let [same as] (())

Symbols: {+, -, *, /, %, **, =, +=, -=, *=, /=,
%=, <<, <<=, >>, >>=, &, $=, |, |=, ~, ^,
^=, !, &&, ||, ‘,’ }

See <tldp.org/LDPabs/html/ops.html>

44
44Monday, August 17, 2015

http://tldp.org/LDPabs/html/ops.html
http://tldp.org/LDPabs/html/ops.html

bash Numeric Constants

bash exclusively uses integer
arithmetic, not decimal numbers

Recognizes Octal numbers (Leading 0),
Hexadecimal numbers (Leading 0x),
other BASE#NUMBER (2 ≤ BASE ≤ 64)
([01] ≤ NUMBER ≤ [0-9a-zA-Z@_])

See <tldp.org/LDP/abs/html/numerical-
constants.html>

45
45Monday, August 17, 2015

http://tldp.org/LDPabs/html/ops.html
http://tldp.org/LDPabs/html/ops.html
http://tldp.org/LDPabs/html/ops.html
http://tldp.org/LDPabs/html/ops.html

bash (()) Construct
Provides arithmetic expansion and evaluation

“ = “ permitted inside (())
“$” not required inside (())

Relational operators (<=, >=, <, >, ==, !=)

Pre and Post variable Increment ++ --
$ a=1; echo $((++a*2)) # 4
$ a=1; echo $(((a*2)++)) # 3
$ a=1; echo $((--a*2)) # 0
$ a=1; echo $(((a*2) --)) # 1

? : trinary operator $ a=2; echo $((t = a>0?1:-1)) # result =1

See <tldp.org/LDP/abs/html/dblparens.html>

46
46Monday, August 17, 2015

http://tldp.org/LDP/abs/html/dblparens.html
http://tldp.org/LDP/abs/html/dblparens.html

Operator Precedence U1

Arithmetic and Relational Expressions
are evaluated using precedence order
(e.g. Please Excuse My Dear Aunt Sally
mnemonic standing for: Parenthesis,
then exponents, then multiplication or
division, then addition or subtraction)

$ echo $((5+3*4)) # Result=17, not 32

See Table <tdlp.org/LDP/abs/html/
opprecedence.html>

47
47Monday, August 17, 2015

http://tdlp.org/LDP/abs/html/opprecedence.html
http://tdlp.org/LDP/abs/html/opprecedence.html
http://tdlp.org/LDP/abs/html/opprecedence.html
http://tdlp.org/LDP/abs/html/opprecedence.html

Comparison Operators

Use [] or [[]] to compare strings; Use
(()) to compare numbers

The result or status of any Linux
command is: 0 means successful;
non-zero means unsuccessful

View the result via $ echo $?
immediately after the linux command
But: ((n)) is successful if n ≠ 0,
unsuccessful if n = 0

48
48Monday, August 17, 2015

Comparison Operators (2)

test
and []

49

Symbol Meaning: true status if
n1 -eq n2 two numbers are equal

n1 -ne n2 two numbers are not the same

n1 -gt n2 n1 is bigger than n2

n1 -lt n2 n1 is less than n2

n1 -ge n2 n1 is at least as big as n2

n1 -le n2 n1 is at most as big as n2

! not

-a Boolean AND

-o Boolean OR

-z s1 string length is 0

-n s1 string length more than 0

s1 = s2 both strings are identical

s1 != s2 each string is different than the other

s1 string is not the null string (empty)

49Monday, August 17, 2015

Comparison Operators (3)

[[]]
Comp-
arisons

50

Symbol Meaning: true status if

s1 = s2 both strings are identical

s1 = w.c.pattern strings matches wild card attern

s1 != s2 each string is different than the other

s1 != w.c.pattern string doesn’t match wild card pattern

s1 > s2 s1 follows s2 in alphabetical order

s1 < s2 s1 precedes s2 in alphabetical order

-z s1 string length is 0 (null string)

-n s1 string length larger than 0

50Monday, August 17, 2015

Command Substitution

Uses Linux to produce commandline ingredients

Form: $(command) {equivalent to ` command ` }

Command Substitutions may be nested to arbitrary
levels since ‘(‘ different than ‘)’. They always start a
subshell

Example:
$ echo Today\’s date and time are $(date).
Today’s date and time are Fri Aug 8 08:32:19 PDT
2015.

See <tldp.org/LDP/abs/html/commandsub.html>

51
51Monday, August 17, 2015

http://tldp.org/LDP/abs/html/commandsub.html
http://tldp.org/LDP/abs/html/commandsub.html

Process Substitution U1

Process Substitution sends the output of one or more processes to
the stdin of another process.

Form: A command list is enclosed in parentheses:
>(command_list) # ; separator for list items -- stdout
<(command_list) # stdin

/dev/fd/<n> is used to transfer stdout to stdin. No subshell is
started with this kind of substitution.

Examples: $ wc <(cat bashman) # lines, words, chars
 7748 42256 314136 /dev/fd/63
 $ wc <(cat bashman; echo today)
 7749 42257 314142 /dev/fd/63
 $ diff <(ls $firstdir) <(ls $seconddir) # compare 2 dirs.
 $ comm <(ls -l) <(ls -al) # compare options output

See <tldp.org/LDP/abs/html/process-sub.html>
52

52Monday, August 17, 2015

http://tldp.org/LDP/abs/html/process-sub.html
http://tldp.org/LDP/abs/html/process-sub.html

Brace Expansion U1

Forms: {a, b, c} # smallest list is: {,}
{1..10} or {a..z} or {M..A} # 1st 10 integers, all
letters, reversed order of letters

Brace Expansions may be nested. Strings are
produced, not filenames.
$ echo a{A{1,2},B{3,4}}b
aA1b aA2b aB3b aB4b

See <linuxcommand.org/lc3_lts0080.php>

53
53Monday, August 17, 2015

http://linuxcommand.org/lc3_lts0080.php
http://linuxcommand.org/lc3_lts0080.php

Numerical Calculation
expr let (()) bc dc awk

54
54Monday, August 17, 2015

Integer Arithmetic

55

Symbol expr let (())

+ expr 3 + 5 let R=”3 + 5” ((R = 3 + 5))

- expr 5 - 3 let R=5-3 ((R=5-3))

* expr 3 * 5 let R=’3 * 5’ ((R = 3 * 5))

/ expr 5 / 3 let R=”5/3” ((R=5/3))

% expr 5 % 3 let R=”5%3” ((R=5%3))

** NA let R=”3**5” ((R=3**5))

++, -- NA let R=++var; let
S=var--

((R = var++));
((S = --var))

+=, -=, *=, /= NA let R=var+=1; let
S=var-=2

((R = var*=3));
((S = var/=4))

55Monday, August 17, 2015

Decimal Arithmetic
bc (1) uses decimal arithmetic with arbitrary precision results on the
command line or interactively.

Arithmetic symbols are the same except for ^ replacing ** for
exponentiation

Standard functions are: scale, length, read and sqrt (=n^1/2; use
fractional exponents for higher roots)

Use: $ echo “scale=2; 3*17.5” | bc # or echo “3*17.5” | bc -l
 52.5

Use: bc -l <<< “3.4+7.0/8.0-(5.94*3.14)” # Here string example
-14.37660000000000000000

Add calc() function to ~/.bashrc :
calc(){ printf “%.2f\n” $(echo “$@” | bc -l); } # 2 place rounding
$ calc 2+3*8/7 # means: 2 + (3*8)/7
5.43

See <shell-tips.com/2010/06/14/performing-math-calculation-in-bash/>56
56Monday, August 17, 2015

http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/
http://shell-tips.com/2010/06/14/performing-math-calculation-in-bash/

Decimal Arithmetic (2)

dc (1) a “reverse polish” desk calculator used
by bc or scripts rather than humans.

unary minus sign is an underscore.

Example: sqrt[((1234*2)-468)/2] to 10 places
$ dc <<< “1234 2 * 468 - 2 / 10 k v p”
31.6227766016

See <computerhope.com/unix/udc.htm>

57
57Monday, August 17, 2015

http://computerhope.com/unix/udc.htm
http://computerhope.com/unix/udc.htm

Decimal Arithmetic (3)

awk (1) offers C-like arithmetic operators to
evaluate expressions in its ‘pattern’ and/or {action
sequences }

Examples:
$ awk ‘NR % 2 == 0’ /etc/passwd #shows even
numbered lines
$ awk ‘END {printf “%5.10f”, sqrt(((1234*2)-468)/2); }’
anyfilename
31.6227766017

See <funtoo.org/Awk_by_Example_Part_1>

58
58Monday, August 17, 2015

http://funtoo.org/Awk_by_Example_Part_1
http://funtoo.org/Awk_by_Example_Part_1

bash Control Flow Commands
if then else for while until do done case esac select

59
59Monday, August 17, 2015

if then else command

Command-lists can’t be empty

Forms:
if command-list; then command-list1;[elif command-list2; then
command-list3; else command-list4;] fi

if command-list
then
 command-list1
[elif
 command-list2
then
 command-list3
...
else
 command-list4]
fi

60
60Monday, August 17, 2015

Conditional Logic Example

Example:
$ U=userid
$ if who | grep “$U” > /dev/null
 then echo Your friend $U is logged in
 else echo We are $U-free.
 fi

61
61Monday, August 17, 2015

bash Loop Commands

for [in] do done command executes a commandlist in
the body of the loop repeatedly, in order to process a
series of string values contained in a list of items.

Forms:
for variablename [in listofitems | or contents of $@]
do
 commandlist
 done

Example:
$ for i in {1..10..2}; do; echo Hello $i times; done
produces 5 lines of Hello {1,3,5,7,9} times.

62
62Monday, August 17, 2015

bash Loop Comands (2)

{while,until} do done command continues to run
commandlist2 as long as the commandlist1 is {true (0
status), false (1 status) }

Form: while|until commandlist1
do
 commandlist2
done

Examples: Infinite or Event loop:
$ while ((1)); do echo still looping; done
$ until ((0)); do echo still looping; done

Monitor i’s value in a loop:
$ i=1; while ((i <= 10)) do; echo i is $i; ((i++)); done

63
63Monday, August 17, 2015

bash Loop Examples

$ set apple banana cherry
$ while [$# -gt 0]; do echo $1; shift;
done

$ lookfor=<userid>
$ until who|grep “^$lookfor” >
/dev/null; do sleep 60; done
$ echo $lookfor has logged on at $(date)
$ who

64
64Monday, August 17, 2015

case Decision Command

case in esac Chooses a commandlist based on
evaluation of an expression rather than the status of
a commandlist.

Form: case expression in
case1) commandlist1 ;;
case2) commandlist2 ;;
*) default commandlistn ;;
esac

expression, case1, case2, etc are usually strings or
variable values

65
65Monday, August 17, 2015

case Example

Initialization script code segment:
USAGE=”Usage: $0 {start|stop|restart|condrestart|
status}”
case “$1” in
 start) app start ;;
 stop) app stop ;;
 restart) app stop; app start ;;
 condrestart) if [“x$(pidof app)” != x]
 then stop app; start app; fi ;;
 *) echo $USAGE; exit 1 ;;
 esac

66
66Monday, August 17, 2015

bash Shell Scripts
#! $USAGE exit n bash -vx

67
67Monday, August 17, 2015

 bash Scripts
Definition: A text file containing a series of Linux
commands to be executed within the context of a bash shell.

Each line in a script file is a single command except when
last character is \ or << word or command name is part of a
multiline command.

Comments begin after # and go to the end of the line

Line 1 of script: #! /bin/bash [-oneoption] directs the Kernel
to use the bash program to interpret this script.

A USAGE line defines the variable USAGE to show the
script name and proper usage. e.g.:
USAGE=”Usage: myscript.bash file1 file2”

See bash resource: <tldp.org/LDP/abs/html/index.html>

68
68Monday, August 17, 2015

http://tldp.org/LDP/abs/html/index.html
http://tldp.org/LDP/abs/html/index.html

bash Script Template

#! /bin/bash
USAGE=”Usage: template.bash”
Program name: template.bash
Author: Robert Katz
Date: August 7, 2015
Purpose: A template for your scripts
Your actual commands go below this line

END OF template.bash (last line of
script)

69
69Monday, August 17, 2015

bash Script Exercise

1. Write a shell script (program) named
diet that displays any file without the
first and last n lines, where n is an
integer. Use the following syntax:
$ diet -n file
Type in the program and test it out.

2. Rewrite the diet script as a function.

70
70Monday, August 17, 2015

bash Script Exercise Answer (1)

#! /bin/bash
USAGE=”Usage: diet -number filename”
Program name: diet
Author: Robert Katz
Date: 8/3/2015
Purpose: To strip off lines from the
top and the bottom of any text file.
Note: For a function, replace ‘exit’
with ‘return’ everywhere in the script

71
71Monday, August 17, 2015

bash script Exercise Answer (2)

1. test that there are 2 arguments
if [$# -ne 2]
then
 echo $USAGE; exit 1
fi

2. Store 1st argument in N as an
integer and strip off the leading ‘-’
declare -i N=”${1#-}”

72
72Monday, August 17, 2015

bsh script Exercise Answer (3)

3. store 2nd argument in FILE and
verify that it exists.
FILE=”$2”
if [! -f $FILE]
then
 echo “File not found”; echo $USAGE
 exit 2
fi

73
73Monday, August 17, 2015

bsh script Exercise Answer (4)

4. Ready to Process. Determine size
of FILE
How many lines in the entire file?
COUNT=$(cat $FILE | wc -l)

Last line number to output using head
LAST=$(($COUNT - $N))

Number of lines to output using tail
FIRST=$(($LAST - $N))

74
74Monday, August 17, 2015

bsh script Exercise Answer (5)

5. Verify that the file is big enough or
do not output anything.
if [$FIRST -gt 0]
then
 head -$LAST $FILE | tail -$FIRST
fi
exit
END OF diet

75
75Monday, August 17, 2015

traps and signals

trap builtin: In a script, trap changes the way signals are handled
from default script termination. The signal list is produced by kill -l .

trap is set for any signal (not sigkill=9), which ignores all traps for it

Forms: trap # Lists traps set in current shell
trap “ “ signal(s) # Ignore listed signals
trap - signal(s) # Restore default processing for listed signals
trap ‘action’ signal(s) # Trigger the action to run if signal(s) received

traps may also be set for 3 fake signals:
EXIT trigger trap action when successful exit occurs
ERR trigger trap action whenever a command has a non-zero status
DEBUG trigger trap action after every command

Subshells inherit trap commands only to ignore or restore default
handling, no customized action.

76
76Monday, August 17, 2015

trap Example

$ cat trap-1.bash
#! /bin/bash
USAGE=”Usage: trap-1.bash”
setting traps on INT and QUIT signals
declare -ix c; declare -ix rt; ((c = rt = 0))
trap “echo Received INT signal c=$c” SIGINT
trap “echo Received QUIT signal rt=$rt” SIGQUIT
while ((c < 1000000)); do ((c++));((rt++)); done
echo “The final answer is $rt”; exit
#END OF trap-1.bash
$./trap-1.bash &
[1] 12345
$ kill -INT %1 # or kill -2 12345 or <Ctrl-C>
Received INT signal; c = 1578
$ kill -QUIT %1 # or kill -3 12345
Received QUIT signal: rt = 17931066
The final answer is 500000500000

77
77Monday, August 17, 2015

